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The nature of a very high-dimensional chaotic attractor in an infinite-dimen- 
sional phase space is examined for the purpose of studying the relationships 
between the physical processes occurring in the real space and the charac- 
teristics of high-dimensional attractor in the phase space. We introduce two 
complementary bases from which the attractor is observed, one the Lyapunov 
basis composed of the Lyapunov vectors and the another the Fourier basis com- 
posed of the Fourier modes. We introduce the "exterior" subspaces on the basis 
of the Lyapunov vectors and observe the chaotic motion projected onto these 
exteriors. It is shown that a certain statistical property of the projected motion 
changes markedly as the exterior subspace "goes out" of the attractor. The 
origin of such a phenomenon is attributed to more fundamental features of our 
attractor, which become manifest when the attractor is observed from the 
Lyapunov basis. A counterpart of the phenomenon can be observed also on the 
Fourier basis because there is a statistical one-to-one correspondence between 
the Lyapunov vectors and the Fourier modes. In particular, a statistical 
property of the high-pass filtered time series reflects clearly the difference 
between the interior and the exterior of the attractor. 

KEY WORDS: Chaos; turbulence; high-dimensional chaotic attractor; 
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component; Lyapunov spectrum; Fourier component; high-pass filter; intermit- 
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1. I N T R O D U C T I O N  

Study  of  c h a o s  in d i s s ipa t ive  o p e n  sys tems  has  d e v e l o p e d  c o n s i d e r a b l y  o v e r  

the pas t  10 years.  In  pa r t i cu l a r ,  c h a o s  in sys tems  wi th  a few degrees  o f  

f r e e d o m  has  been  e x a m i n e d  ex tens ive ly  f r o m  v a r i o u s  po in t s  o f  view. ~  O n  

the  con t r a ry ,  h o w e v e r ,  s tudy  of  c h a o t i c  b e h a v i o r  in sys tems  wi th  inf ini te  
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degrees of freedom has not progressed substantially. The chaotic behavior 
immediately after its birth can be described by a small number of degrees of 
freedom even when the system itself has infinite degrees of freedom. (2~ 
However, the chaotic state realized by a sufficiently large amount of energy 
injection from the external world has, in general, contributions from an 
extremely large number of degrees of freedom. A classical example is the 
fully developed fluid turbulence. Traditional studies of fluid turbulence 
have developed statistical theories which provide methods to compute 
statistical quantities such as correlation function, Fourier spectrum, and so 
on. (3) These theories, however, have been constructed without inquiring of 
the mechanical origin of randomness in turbulent behavior. To elucidate 
this problem it is necessary to study the dynamical structure of the attrac- 
tor into which the orbit in the phase space is trapped, but the dimension of 
the subspace confining the attractor is too large to find an efficient method 
to recognize such a high-dimensional object in the phase space. This is the 
reason why there has not been a clear understanding of the connection 
between turbulent behavior occurring in real physical space with the struc- 
ture of the attractor in phase space. 

Is it possible to recognize the dynamical structure of a high-dimen- 
sional attractor? Are there fundamental relations between the physical 
processes in real space and the structure of attractor in phase space? 
Several authors have attempted to study high-dimensional chaotic state 
exhibited by simple dynamical systems with infinite degrees of freedom. (4'5) 
They succeeded in computing various quantities such as Lyapunov spec- 
trum, Lyapunov dimension, metric enropy, and so on, which characterize 
some aspects of attractors. Unfortunately, however, we are not aware of 
any previous approach that provides insight into the nature of high-dimen- 
sional attractors which may even partly answer the above questions. 

Let us consider an open dissipative system with infinite degrees of 
freedom. Even in the chaotic state, most of the degrees of freedom do not 
actively contribute to sustaining chaotic behavior; rather they work as a 
"sink" for fluctuation. We roughly call the subspace spanned by the modes 
actively contributing to the chaotic behavior the "interior" of attractor. On 
the contrary, the subspace spanned by the inactive "sink" modes may be 
called the "exterior" of attractor. The chaotic orbit in the phase space is 
unstable against an infinitesimal fluctuation, and a small error is amplified 
exponentially along it. This fact means the chaotic orbit has an ability to 
produce new information. It is in the interior that the new information can 
be generated. The information produced in the interior is transported to 
the exterior of the attractor and dies away there. Therefore, it is expected 
that the dynamical behavior in the exterior should be qualitatively different 
from that in the interior. If we can embed the attractor into a space of finite 
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dimension by a smooth transformation, this subspace is just the interior. 
However, such an operation is at least practically impossible considering 
that the attractor is "strange" in the sense that it is composed of an infinite 
number of "sheets." It may be possible, however, to construct a subspace 
that can approximately confine the attractor. 

The subject of the present paper is concerned with the problem 
described above. Our first question is whether there is some method to 
decompose the phase space into the two subspaces; the interior and the 
exterior of attractor. The second question is how the dynamical behavior is 
different qualitatively in the interior and in the exterior. The final question 
is in what physical process we can recognize the qualitative difference. We 
investigate these questions by analyzing a very high-dimensional chaotic 
attractor exhibited by a mathematically simple and physically realistic 
dynamical model with infinite degrees of freedom. 

The outline of our paper is as follows. In Section 2 we introduce a sim- 
ple model equation, which we investigate in detail. The physical and 
mathematical meanings of the model equation are briefly reviewed. The 
instability process through which the linear fluctuation modes are suc- 
cessively excited is explained. In Section 3 we introduce two kinds of fun- 
damental bases from which we watch the chaotic motion trapped in the 
attractor, one the Lyapunov basis composed of Lyapunov vectors, the 
other the Fourier basis based on the Fourier modes. In Section 4 we show 
an important relation between the Lyapunov spectrum of chaotic state and 
the decay rate spectrum of linear fluctuation modes. In Section 5 we watch 
the attractor from the Lyapunov basis and point out that the global shape 
of attractor is closely related with the Lyapunov spectrum. We introduce in 
Section 6 the idea of the "exteriors" of attractor as subspaces spanned by 
the Lyapunov vectors. We study the statistical properties of the chaotic 
motion projected onto the exteriors. A certain statistical property exhibits a 
notable change as the exterior subspace goes out of the attractor. The 
origin of such a behavior is explained using the results of both Sections 4 
and 5. In Section 7 it is shown that each base vector of the Lyapunov basis 
has a one-to-one correspondence with each of the Fourier vectors in a 
statistical sense. Thus it is anticipated that the counterpart of the 
phenomena discussed in Section 6 can be observed also in the Fourier 
basis. This is verified in Section 8, where it is shown that the high-pass 
filtered time series enables us to recognize the qualitative difference between 
the dynamics of the interior and those of the exterior. In Sections 4-8 the 
main results of each section are briefly summarized at the end of each sec- 
tion. Finally, Section 9 is devoted to the summary and conclusion of the 
present paper. 

We by no means intend to assert that the results presented here are 
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universal. However, we believe that the approach used in the present paper 
can usefully be applied to understanding any high-dimensional attractor in 
a system with infinite degrees of freedom. 

2. M O D E L  S Y S T E M  

To accomplish our purpose it is desired that the model system should 
have a simple mathematical structure and, furthermore, should have a clear 
physical meaning. For this reason we use a delay-differential (DD) 
equation, i.e., a differential equation involving a time-delayed feedback 

d x ( t ) / d t  = - x ( t )  + r c # f [ x ( t  - tR)] (2.1) 

In the present paper we use the following form of the feedback function 

f ( x )  = sin(x - Xo) (2.2) 

The model equation (2.1) together with (2.2) have been proposed as a stan- 
dard model of "optical turbulence" in nonlinear optical resonators. (6) They 
have been derived from a set of nonlinear partial differential equations 
(Maxwell Bloch equations) for space and time under some appropriate 
conditions. A great advantage of eq. (2.1) is that it can be regarded as a 
mapping rule from a "spatial pattern" to a new pattern after a finite time 
interval t R, as will be explained later. Thus the CPU time required for 
integrating eq. (2.1) numerically is much shorter (about 10 -3 times) than 
that required for usual partial differential equations. The model equation 
(2.1) has two principal bifurcation parameters, tR and #. Physically, the 
delay time tR comes from the boundary condition imposed upon the 
optical resonator and is related to the system size (i.e., the length of optical 
resonator), whereas # means the energy injected in the system and plays a 
similar role as the Reynolds number in fluid turbulence. The effect of 
parameter x o is trivial. Thus we fix this Xo = 0 from now on. 

For sufficiently large # (and/or tR) the stationary solution x~ of 
eq. (2.1) becomes unstable as ~ (and/or tR) increases, and finally leads to a 
chaotic solution. It will be instructive to study the process of instability in 
some detail. (6) Linearizing eq. (2.1) around xs and setting x ( t ) -  xs  oc e iet, 

we immediately obtain a characteristic equation for the complex frequency 
g? = +/3 - i~ (r 0) of a linear fluctuation mode 

if2 + t = ~ # f ' ( x s )  exp(-if2tR) (2.3) 

Since eq. (2.1) is a system with infinite degrees of freedom, eq. (2.3) has 
infinite number of roots corresponding to the frequencies of linear fluc- 
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tuation modes. We number the modes in order of the magnitude of/~. It is 
easy to show that/3, ,  i.e., the/3 of nth mode, satisfies 

2n~/tR < fl~ < (2n + 1 )~/tR (2.4) 

The frequency of the modes are distributed with almost equal intervals 
~2~/tR. In terms of laser physics these modes are the longitudinal cavity 
modes in resonance with the optical resonator surrounded by two mirrors 
with spacing tRc (c light velocity; see Section 3). For sufficiently large n, the 
linear fluctuation mode becomes stable, and its frequency and decay rates 
are asymptotically expressed by 

fl~ --+ (2n + �89 R 

~ --* - l o g  [fl~/I 7r#f'(x~)l ]/t R 

(2.5a) 

(2.5b) 

However, not all the linear modes are stable if I~pf'(x~)] > 2. The nth mode 
becomes unstable each time/t  (or tR) exceeds the critical Value p(") (or t~) .  
Since #(,,+1)> #(n~ (t~,+l)> t~)) the number of unstable modes increases 
with # (and/or tR) as shown schematically in Fig. 1. Thus the number of 

I I 

2 :/b ', 

F' ,  " ' P ' -  

I 

Fig. 1. Mot ion  of complex characteristic frequency s = ,8, - ic~ n. The broken curves connect 
(%, fin) of the same values of t R and/~. (en, fin) moves in the direction indicated by an a r row 
as t R and /0r  p is increased. 
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unstable modes responsible for the self-oscillation increases with # 
(and/or tR). If the self-oscillation is chaotic, the above fact implies that the 
dimension of chaos can be made arbitrarily large by controlling /~ 
and/or tR. 

Let us divide the time domain into sections of interval tR, i.e., In = 
(ntR, (n+ 1)tR] ( n = 0 ,  1, 2,...). Next we denote the solution x(t) in the sec- 
tion In by xn(t), where z = t - ntR (0 <~ ~ < tR). Then eq. (2.1) is rewritten as 

;o x n + l ( ~ ) = e  ~xn(tR)+~ # e ~+Sf[xn(s)] ds (2.6) 

Now we consider an infinite-dimensional "state vector" Rn whose com- 
ponent at v (0 ~< ~ < tR) is given by xn(z). Then eq. (2.6) defines an infinite- 
dimensional mapping rule from R,  to Rn +1. 

R.+I  = F(R.) (2.6)' 

Next we consider how the infinitesimal variation 6xn(T) around the 
solution xn(z) develops. Linearizing eq. (2.6) around xn(r), we have 

;o 6 x , + l ( ~ ) = e  ~6xn(tR)+~# dse-~+' f ' [xn(s ) ]  6x,(s)  (2.7) 

which defines a mapping rule for the infinitesimal vector ~SR, = {6xn(~)} in 
the tangent space 

6R,+1 = DF(Rn) 6Rn (2.7)' 

The numerical methods used for integrating eq. (2.6) and eq. (2.7) are 
explained in Appendix A. 

3. TWO F U N D A M E N T A L  BASES 

In this section we introduce two kinds of fundamental bases from 
which we observe the motion of system trapped in the attractor. One is 
called the Lyapunov basis and another the Fourier basis, as explained 
below. 

3.1. Lyapunov  Basis 

Let us consider a unit sphere 16Ro[ = 1 in the tangent space of a state 
vector Ro in the attractor A. The Nth iteration of the sphere evolves into an 
ellipsoid, because the Nth iteration 6N N= DF(RN) 'DF(RN_  1). 
"'" DF(R1)" ~Ro - D;VF. 6Ro satisfies 6RtN(DNF-1)t(DNF -1) 6RN = l. Con- 
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sider the limit N---, oe. Then the length of any principal axis of the ellipsoid 
asymptotically grows (or decays) like exp(N2). The characteristic exponent 
2 is usually called the Lyapunov exponent. (7'8) Hereafter, we number the 
Lyapunov exponents in order of their magnitudes, i.e., 21 >~ 22/> 23/> ""  >~ 
2~>--. .  The set of Lyapunov exponents (21, 22,...,2n,... ) is called the 
Lyapunov spectrum. On the other hand, a unit vector taken along the prin- 
cipal axis corresponding to 2~ is called the ith Lyapunov vector ei(RN). We 
call the set of Lyapunov vectors {e~(R)} the Lyapunov basis at R. 

Next, we define the Lyapunov component as an inner product of the 
state vector R with the Lyapunov basis ei(R') at R'e_d 

C,(R I R') = R �9 e,(R') = fo, R dr y(z)  e~(z J R') (3.1) 

where y(v) and ei(z I R') are the components of the state vector R and of the 
Lyapunov vector ei(R' ) at the time (0 < r ~< tR), respectively. 

The Lyapunov vectors together with the Lyapunov exponents 
represent the local structure of the attractor; in the directions of ei(R') the 
attractor is expanded (or shrunk) with a rate related to the factor e ;~i. In 
this sense the Lyapunov basis is looked upon as a dynamical coordinate 
system. A defect of the Lyapunov basis is that it is not unique but depends 
on the state vector R' at which the Lyapunov basis is defined. To avoid this 
complication we later redefine various quantities defined in connection with 
the Lyapunov basis at R' as the averaged ones over R ' e  A. 

A conventional method for computing the Lyapunov vectors together 
with the Lyapunov exponents is the Gram-Schmidt orthogonalization 
procedure. In Appendix A we review briefly how this procedure can be 
applied to the DD equation. (4'8) 

3.2. Fourier Basis 

The Fourier basis {fk} (k=0 ,  1, 2,...) is a set of vectors whose com- 
ponent fk(z) at time (0 < z ~< tR) is given by 

fk(z)  = (2/tR) 1/2 cos cokr (k = even) 
(3.2) 

= (2/tR)1/2 sin c0, + 1 z (k = odd) 

where ~o, - k~/tR is defined so as to fulfill the periodic boundary condition. 
The inner product of the state vector R with a Fourier basis fk, i.e. 

rk(R) -= R- fk = f~" dr y(z)  fk(z)  (3.3) 

is called the Fourier component. 

822/44/5-6-17 
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The Fourier vector f~ has a strong resemblance to the linear fluc- 
tuation mode with frequency /~k (eq. (2.4)). Thus the Fourier component 
measures the contribution of the linear fluctuation mode to the chaotic 
motion. Our system physically describes the variation of the phase of elec- 
tric field at a fixed position in a nonlinear optical resonator. In such an 
optical system the spatial pattern moving with the light velocity is observed 
as a temporal pattern at a fixed position. Therefore, the Fourier decom- 
position in the time domain is equivalent to that in the space domain; in 
other words, the vectors fk may be interpreted as the spatial Fourier 
modes. Specifically, in systems described by partial differential equations in 
space and time it will be quite natural to define the Fourier vector by the 
spatial Fourier modes. Thus the physical meaning of the Fourier basis is 
very clear, and this basis can be thought of as a physical coordinate system 
in contrast to the Lyapunov basis. 

Unfortunately the time series y(v) does not satisfy the periodic boun- 
dary condition and the high-frequency Fourier component involves a 
spurious algebraic decay accompanied by Gibbs oscillation. To suppress 
this undesired effect the time series is always multiplied by a cosine-bell 
window 

B(r) = [1 - cos(~r/A) ]/2 (~ <~ A) 

=1 ( A < ~ t R - J )  

_ c o s  

in computing the Fourier component. If the width A is taken large enough, 
say A ~> tR/32, the results are insensitive to the choice of A. 

4. L Y A P U N O V  S P E C T R U M  

By the Gram Schmidt procedure in Appendix A we can compute the 
Lyapunov exponents as well as the Lyapunov vectors. Once the Lyapunov 
spectrum is obtained, we can evaluate the Lyapunov dimension introduced 
by Kaplan and Yorke (9) 

D = / ) +  y, L/I ,~+ll  (4.1) 
i 1 

where /) is the largest integer for which ~ - 1  2i> 0. This quantity is the 
dimension of the volume element in the tangent space that makes the 
volume expansion rate exp Yj= 1 2e invariant and so it provides a measure 
of the dimension of attractor. Recently, Farmer computed the Lyapunov 
spectrum of a DD equation of the same class as eq. (2.1). (4) He also corn- 
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puted the fractal dimension D F directly by the box-counting method when 
DF is not very large and compared D F with D obtained by eq. (4.1), finding 
that D is very close to O F. Thus it is conjectured that D can be used as an 
approximate value of D F. Hereafter we use D as the measure of the dimen- 
sion of attractor. 

An example of Lyapunov spectrum is depicted in Fig. 2(a), where D is 
estimated to be about 45 in this case. Empirical studies for the model 
equation (2.1) reveals that there are simple scaling rules for the Lyapunov 
spectrum. For tR ~> 1 and # large enough (# > 0.85) we have a scaling rule 
2i(tR, #) = 2i/,(1, #) with respect to the system size tR so that D is propor- 
tional to tR. The latter property has already been obtained by Farmer. (4) 
Existence of a similar scaling rule has been found also for a partial differen- 
tial equation. (s) Thus, the scaling rule of Lyapunov spectrum with respect 
to the system size appears to be quite universal. In the case of our system, a 
further scaling rule with respect to # exists, i.e., 2i(tR, #)=2i/~(tR, I) for 
#~>1 and i~>tR/rc. Thus D is proportional to #, too, for #>> 1. The 
asymptotic expression is empirically given by 

D ~ (1.10 _+ 0.05) tR# (4.2) 

At first sight, increases in # and tR bring about similar effect on making the 
chaotic behavior more complicated. The role of # and tR is, however, quite 
different; Let us consider the metric entropy H of the chaotic state. The 
metric entropy, which measures the uncertainty (or information) produced 
per unit time, is roughly the total sum of the positive Lyapunov exponents. 

(a) (b) 

-7 

30 O0 60 O0 90 O0 120 O0 150 O0 0 .00  l .  OO 2 .00  3.Or  4 .01 5.01 

NUMBER OF EXPONENT LOG(NUMBER OF EXPONENT) 

Fig. 2. An example of Lyapunov spectrum. In (b) the line indicates the asymptotic log-linear 
behavior. Here # = 2.10 and t R - 2 0 .  
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Since our Lyapunov exponent is defined at every tR, H should be redefined 
as Z" (positive Lyapunov exponent)/tR. Obviously H depends only on # 
and is independent of tR because of the scaling relations. In particular 
H oc # for # ~> 1. Thus the complexity of the chaotic state, which is invariant 
for the change of tR, is enhanced only by increasing #. In our system it can 
be proven that in the limit of g ~> 1 the time series becomes so complicated 
as to be described by a Gaussian stochastic process. (7) 3 This fact seems to 
be consistent with the above considerations. An advantage of our system is 
that a variety of chaotic states with the same D but with different com- 
plexities can be produced by adjusting the two parameters /~ and tR 
appropriately. 

The linear fluctuation modes introduced in Section 2 play active roles 
in generating chaotic behaviors if they are in or near the unstable band. 
However, stable modes far from the unstable band are not excited substan- 
tially because their decay rate c~ i gets larger like log i. These modes should 
be responsible for the large negative Lyapunov exponents. The temporal 
behavior of the stable modes is dominated by the self-decaying motion with 
the decay rate c~i, so that the Lyapunov exponent corresponding to these 
mode should agree with c~i. Indeed, as shown in Fig. 2(b), the Lyapunov 
spectrum approaches a log linear behavior as the number of Lyapunov 
exponent i increases 

2i --* - l o g  i + const. (4.3) 

which agrees with the decay rate spectrum of the linear fluctuation modes 
eq. (2.5b). This log dependence is observed also by Farmer. (4) 

A quite interesting fact is that there exists a clear "critical number" 
i =  ILE above which 2i exhibits the log linear behavior. ILE should charac- 
terize the upper bound of the mode number for which nonlinearity plays an 
essential role. Thus we may expect that ILe may have something to do with 
the Lyapunov dimension. Indeed, as is shown in Fig. 3, there is a clear 
linear relation between ILE and D 

ILE = 0.65 D (4.4) 

This relation holds quite well for any set of parameters tR and #. Thus we 
can summarize the most important result in this section as follows 

3 (In our system the largest Lyapunov exponent is related to the correlation function of the 
delayed force as 

K. Ikeda, unpublished.) 
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Fig. 3. 
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Relations of the characteristic numbers ILe (�9 and ILc (0) to the Lyapunov dimen- 

sion D for various sets of values of (tR,/~). 

Short Summary 1. There is a critical number ILE above which the 
Lyapunov spectrum agrees with the decay rate spectrum of the linear fluc- 
tuation modes. ILE is closely connected with the dimension of the strange 
attractor. 

We have to note that there is no reason why ILE should be close to D. 
Recently, the Lyapunov spectrum of the Kuramoto-Sivashinski (KS) 
equation has been studied by Pomeau, Pumir, and Pelce. (5) Judging from 
their numerical data, ILE seems to be considerably larger than D, but if ILE 
exists, we conjecture that it is proportional to D also in their case. 

5. L Y A P U N O V  C O M P O N E N T  

How does the attractor look when it is observed from the Lyapunov 
basis? Let us consider a square root average of the Lyapunov component 
over the state vector, i.e. 

Ci(R') = [ ( (  C~(R t R') >>R ~ ~ ] 1/; (5.1) 

where the notation ( ( . . .  > > a ~  indicates an average over the state vector 
R moving in the attractor A. This quantity represents the size of attractor 
measured along the ith Lyapunov vector and thus characterizes the global 
shape of the attractor observed from a local Lyapunov basis. This quantity, 
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however, still depends on the position R' at which the Lyapunov basis is 
defined. Hence we further average C2(R ') with respect to R '~  .4 

Ci = [ ((C~(R I R ' ) ) )R,R,~i]  1/2 (5.2) 

We call this quantity the averaged Lyapunov component. 
As mentioned in Section 3, the Lyapunov exponents characterize the 

local structure of attractor. In particular the local width of attractor 
measured in the direction of the ith Lyapunov vector is related to the fac- 
tor e ~i. Thus C~, which represents the size of the attractor, might have some 
connection with the local width. Indeed the result of numerical simulation 
suggests that the Lyapunov component exhibits quite similar behavior as 
the factor e ~ as expressed in the simple relation 

Ci oc e ~i" (5.3) 

An example is depicted in Fig. 4. For i > D  the exponent r/ is constant 
independent of i with magnitude between 1 and 2, and seems to approach 1 
as/~ ~ oo. For i < D the exponent becomes slightly dependent upon i, but 
this dependence is much less significant than the dependence of e z' on i. 
Therefore, there is a characteristic number corresponding to ILE above 
which Ci exhibits a log-linear behavior 

log Ci = - r / l og  i + const. 
or  

Fig. 4. 

(5.4a) 

C i off i - ~  (5.4b) 

r~ 

c ~  " ' " "  " - . ,  
~ d  

~_  

d i t 1 t t r 
' 0 . 6 4  O. llO -0 .145  - 0 . 9 9  - ! .~54 - 2 . 0 9  

LYFIPUNOV EXPONENT 

Relation between the Lyapunov exponents and the Lyapunov components. The line 
is a guide for eyes. Here/~=2.10 and tR =20. 
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The characteristic vector number Irc is slightly different from ILE because 
the exponent t/depends weakly on i for i < D. As shown in Fig. 3 the plots 
of ILc and D are well-fitted with a linear function 

ILc = 0.70D + 6.0 (5.5) 

for any set of parameters # and tR. Thus ILc is slightly larger than ILe. We 
note that eq. (5.4b) provides the lower bound for ~/, i.e., r/> 1 because 
( ( R - R ) )  = Z  C~ < +oo. Now we summarize the result of this section: 

Short Summary 2. In log scale the averaged Lyapunov components are 
quite similar to the Lyapunov spectrum. Hence, there is a characteristic vec- 
tor number ILC corresponding to ILE above which the Lyapunov components 
in log scale behaves like the decay rates of the linear fluctuation modes. 

6. E X T E R I O R S  OF A T T R A C T O R  A N D  P R O J E C T I O N  O N T O  IT 

Consider a set of Lyapunov vectors {ei(R')} defined at a position R' 
in the strange attractor. We define a subspace IN~(R') which is spanned by 
all the Lyapunov vectors whose vector number is smaller than l, i.e., el(R'), 
e2(R') ..... el_ l(R'). This subspace "confines" the attractor in the vicinity of 
R' if the vector number l is chosen to be larger than D. Conversely, the 
complementary subspace EX~(R') spanned by the vectors el(R'), et+ ~(R'), 
el+z(R' ) .... "excludes" the attractor in the vicinity of R'. This subspace, of 
course, does not exactly exclude the whole of the attractor because the sub- 
space IN~(R") confining the attractor locally at R" rotates in the phase 
space as R" goes away from R' and it becomes not perpendicular to 
EX~(R'). It seems, however, that the subspace which is effectively covered 
by IN~(R") as R" moves in the attractor does not substantially occupy the 
whole of phase space, i.e., it has small finite dimension. To verify this we 
have done the following computation. 

Taking the two Lyapunov vectors ei(R') and ej(R") defined at different 
state vectors R' and R" in A, we computed the square average of the inner 
product 

Qc(i[j) = ( (  (ei(R')'ej(R"))2))R,R,,~A 

moving R' and R" independently in A. An example is depicted in Fig. 5. In 
this figure a circle indicates the value of j =  jmax(i) maximizing QL(il j)  for 
a given i. For very small i, Jmax(i) is equal to 1. Such vectors are called the 
"core Lyapunov vectors," which will be discussed in the next section and in 
Appendix B. Except for the core vectors, Jmax(i) is located in the vicinity 
of/. This fact implies that the order of the Lyapunov vectors {ei(R')} is 
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Relation between two Lyapunov vectors ei(R') and ej(R") defined at different state 
vectors R' and R" in the attractor. Here p = 2.89 and tR = 20. (See text.) 

almost preserved in a statistical sense as the state vector R' moves in A. 
Next we consider the fluctuation of a Lyapunov vector of a given vector 
number. In Fig. 5 the shaded region indicates the set of j satisfying 
QL(ilj) ~ 0.5 x QL[iljm~x(i)] for each i. This region represents the number 

j of the Lyapunov vectors ej(R") effectively spanning the subspace over 
which the vector e~(R') wanders as R' moves in A away from R". Evidently 
such js  are localized around Jm~x(i)= i. Thus the Lyapunov vectors defined 
at different state vectors in A are considerably correlated if their vector 
numbers are close to each other. 

We do not assert that the above results are generic for all attractors. 
However, we conjecture that they are valid for the Lyapunov vectors with 
sufficiently large vector numbers. The problem is the total number of core 
vectors. In our attractor the total number of core vectors is fortunately (or 
maybe unfortunately) much smaller than D, so that most of the Lyapunov 
vectors e~(R') with l<D are "well-ordered" over the attractor. This is not 
the case for all attractor. We conjecture that a counterexample is the 
Kuramoto-Sivashinsky equation. Judging from the results of Pomeau, 
Pumir, and Pelce (5) the total number of core vectors seems to be larger 
than D. 

In addition to being well-ordered, the motion of a Lyapunov vector of 
a given number is effectively restricted to a subspace of small dimension. 
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Thus we can make the subspace IN~(R') so as to effectively confine the 
whole of the attractor by choosing l sufficiently large. Therefore, the com- 
plementary subspace EX~(R') may be looked upon as an exterior subspace 
excluding the attractor. 

We consider the projection of a state vector R onto the lth exterior 
EXL(R ') 

/~ (R ' )R  = ~ Cj(RIR') ej(R') (6.1) 
j ~ l  

where /~#(R') is the projection operator. If l is much smaller than D, the 
exterior EX#(R') contains a considerable part of the attractor, so that the 
projected vector /~ (R ' )R  contains rich information from the inside of the 
attractor. For l~>D, however, EX~(R') goes out of the attractor and the 
projected vector contains only the information from the outside of the 
attractor. We are interested in how the characteristics of the projected vec- 
tor vary when the order l is increased across dimension D. 

The component of the projected vector at time z, which is denoted by 
~bl(r, R I R'), is 

0,(r, R I R ' ) =  ~ Cj(R I R ' )e j (z lR ' )  (6.2) 
j ) l  

where ej(zlR') is the component of ej(R') at ~. Now we show that the 
statistical properties of the amplitudes of 0l change markedly as l exceeds 
some characteristic number. For this purpose we introduce a correlation 
function between the amplitudes of two time series 0~ and 0 2, each of 
which is normalized by its time average 

C~m=-(([~pz(r,R[R')/~b~(v, RI R ' )] [I//m(~ , 2  Rt R ' )/~bm(z, R [ R')]  ))ma,~ ~ -  1 2  

(6.3) 

where the bar indicates a time average 

if==- tR 1 f~R F(t') dt' 

In Fig. 6(a) the correlation functions for various l are depicted as a 
function of m. The correlation function has the maximum at m = l and 
decreases monotonically as I m -  II increases, so that we can define the half- 
width AL(I ) of the correlation function as the difference of two values of m 
satisfying ClmL __--C~/2. AL(1) measures the total number of ~b 2 correlated 
with ~b~. Fig. 6(b) shows the typical behavior of AL(l). A remarkable 
characteristic is that A L(l) increases suddenly as I exceeds a threshold value. 
This threshold agrees well with Irc introduced in the previous section. 
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(a) (b) 
g_ g 

( . ,  . , ,  . . . . . . . . . .  o . . . . . . . .   ,oo ooo 
VECTOR NUMBER(m) VECTOR NUMBER(~,) 

Fig. 6. (a) Correlation functions Ctr,, at various l, and (b) correlation length AL(I). In (a) 
each CILm takes the maximum value at m = l and the peak value C~ indicates (flatness factor 
-1)  atL Here #=2.10 and tR=20. 

What are the origins of such behavior? We point out at least two 
origins. One is the transition to the log linear behavior seen in the 
Lyapunov component,  but another is a quite new effect; it is a localization 
effect of the projected vector in the time domain. We first explain the for- 
mer effect. 

Let Olin be the angle between two projected vectors P~(R')R and 
L t Pm(R )R. The square average of cos Otm, i.e., the inner product of the two 

projected vectors, measures the similarity between two projected vectors. It 
is expressed only in terms of the Lyapunov components 

<<COS 20Im>>R,ll'~l 

m_(( m~ C2(R [ R ' ) /  ~ C2(" I " ' ) ~  " 
i>~ (l,m) ti>~min(l,m) //  11,11' E A 

C~ (6.4) 
i ~> max(/,rn) [i/> min(l,m) 

As I I - m  I ~ oo, the above quantity goes to zero and the two vectors 
become perpendicular. Now we evaluate how it decreases with I I - m l .  For  
i >> ILc we know that C~ decreases algebraically as C~ oc i -2n,  but for i < ILc 
we do not know a precise analytical expression. However, empirical study 
shows that it is roughly expressed by an exponential function, i.e., C~ oc 
exp( -7 i ) ,  where 7 is a constant. Therefore, the types of decay in 
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(<cos 2 Otto)) are quite different depending on whether l, m<ILc or not. 
For / ,  m < ILc we obtain 

<<cos 20tm } }  ~ exp - 7 1l-  ml (6.5a) 

whereas for l, m > ILc 

<<cos 2 0/~>> ~ [min(/, m)/max(l, m)] 2" ' (6.Sb) 

Now we introduce a quantity nL(l) characterizing the number of projected 
vectors similar to the lth projected one. This is defined as the total number 
of vectors such that <(cos 2 0t, ~ ) )  ~< 1/2, i.e., ( (  [Olm [ ) )  ~ 7r/4. Thus nL(l ) is 
evaluated as 

nL(l)= const, for l<Irc (6.6a) 

nL(l)=(21/2~-1_2 1/2~ ~)1 for l>Irc (6.6b) 

Equations (6.6) explains the linear growth of correlation length AL(I ) 
which occurs for l>ILc (see Fig. 6a), because the similarity between the 
two projected vectors should be reflected in an enhancement of correlation 
between their square component. There is, however, a big quantitative dis- 
crepancy between nr(l) and AL(I): The rate of increase, i.e., dnL(A)/dl, 
typically 0.5 or so (t/= 1.8), is much smaller than that of AL(I), which is 
roughly dAL(l)/dl~ 1.8. 

To explain the above discrepancy we have to take into account the 
localization effect. To describe this effect we introduce the flatness factor for 
the time series 62(~, R[R' )  

2 

FL(l) = ( (~4 (r ,  R I R')/~,~(~, R IR') ))R,R'EA 
2 

4 "L" ( ( 6 , (  , RIR')  2 z (6.7) >>,,,,,,~A/<<~,,(, R1R') >>,,,~,~; 

Suppose that the time series ~,~(t) is localized in some time domains (active 
domains) with a characteristic amplitude #S~v, the flatness factor leads to 

~/4 X "~. (length of active domain) • tR FL(I ) ~ av  

[#Ja2~ • ~2 (length of active domain)] 2 

= tR/~ (length of active domain) 

Thus the flatness factor characterizes the reciprocal of the fraction of active 
domains filled with the fluctuation. From eq. (6.7) we obtain the relation 
FL(I)=C~+ 1, SO that we can read FL(I ) from the peak value of the 
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correlation function. As seen from Fig. 6(a) the flatness factor increases 
linearly with l, which implies a development of localization with l. Suppose 
m ~> l. Then the inequality 

leads to 

((@2@2)) ~ (((@l-- ~/m) 2 ~2m + 0 4 ) )  >~ ( (@4))  

C~m >> FL(m)((cos 20lm )) - -  1 (6.8) 

The above inequality means that CLm decays much slower than 
((COS20Zm)) does. Thus AL(I) should be much larger than nL(l ). The 
localization phenomenon is attributed to the nature of the Lyapunov vec- 
tors rather than that of the Lyapunov component (see Appendix B). 
However, we do not go any further into this problem in the present paper. 
This problem will be discussed elsewhere. 

Now we summarize the important result of this section. 

Short Summary 3. The exterior subspaces of  attractor are defined 
using the Lyapunov basis. The correlation characteristics of the state vectors 
projected onto different exterior subspaces change markedly as these 
exteriors "'go out" of  the attractor. 

7. L Y A P U N O V - F O U R I E R  ( L - F )  C O R R E S P O N D E N C E  

The Lyapunov exponents agree with the decay rates of linear fluc- 
tuation modes as the order exceeds IcE. For such vector numbers it seems 
quite plausible that the Lyapunov vectors have some resemblance to the 
linear fluctuation modes that are well-approxfmated by the Fourier vectors. 
To examine this idea, we computed the square average of the inner product 
of a Lyapunov vector with a Fourier vector 

Pc(il k) = (((ei(R')- fK)2))R,~A (7.1) 

This quantity measures the contribution from ei to fk (and vice versa). In 
Fig. 7(a) we indicate by circles the i=/max(k) maximizing Pc(i[k) for a 
given k. The shaded region indicates the range of i satisfying Pc(i]k)>~ 
0.7PL[imax(k)]k] for a given k. Figure 7(a) means that the vector numbers 
of Lyapunov vectors chiefly contributing to fk are localized in the vicinity 
of /max(k).~k, and thus there is a statistical one-to-one correspondence 
between the Fourier vectors and the Lyapunov vectors. A surprising fact is 
that such correspondence exists even for the Lyapunov vectors whose order 
is smaller than ILe. Strictly speaking, this correspondence rule breaks down 
for a small k regime where imax(k) = 1. Such Fourier modes correspond to 
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the core vectors discussed in the previous section, and we call them the 
"core modes" because they carry the major part of turbulent fluctuation. 
The total number of core modes is much smaller than D and ILE. The 
meaning of core modes is discussed in Appendix B in connection with the 
recent results on Kuramoto-Sivashinski equation. 

The correspondence rule between the Lyapunov basis and the Fourier 
basis ensures that the correlation characteristics of the projected vectors 
onto the exteriors, which have been discussed in the previous section, must 
be observed also on the Fourier basis. However, the correspondence rule 
for the projected vectors is considerably different from that for the basis as 
shown below. Consider the projection of a state vector onto the external 
subspace defined by the Lyapunov basis. We rewrite it in terms of the 
Fourier basis 

with 

and 

/3~(R')R = ~ Fq(R t R') fq (7.2) 
q 

Fq(RI R') = ~ G(q, j, R IR') (7.3a) 
j ~ l  

G(q, j, R IR') -= (ej(R') �9 f q) �9 Cj(R I R') (7.3b) 

Let us define the square average PFL(i lk ) - - ( (G2(k ,~LR[R' ) ) )R.R,~j .  
Then 

PFL(il k) = PL(il k) C 2 (7.4) 

Figure 7(b) shows the order i = i*(k) maximizing PrL(ilk) and the range of 
i satisfying PFL(il k) ~ PgL(i*(k) lk) X 0.7. Except for small k corresponding 
to the core mode, i*(k) is approximated by a linear function o fk  

i*(k) = A o + A 1 k (7.5) 

Since the Lyapunov component takes the maximum at i = 1, i*(k) shifts to 
the lower side of /max(k), and so AI~< 1. According to numerical com- 
putations the function i*(k) is not very sensitive to the parameters # and 
tR. Typical values of the two coefficients are Ao ,.~ tR/rc and A1--~0.5-0.7. 

Relation (7.5) provides a modified correspondence rule: For a given k, 
PrL(ilk) is well-localized around i=i*(k).  Hence we can approximate 
Fq(RIR') by Fq(R) for q>>i*-~(l) and by 0 for q ~ i * - l ( I ) ,  respectively. 
Thus we have the following correspondence 

"F (7.6) /~ (R ' )R  ~ Z Fq(R) fq - P~._~(,)R 
q >  i*-1( / )  



Study of a High-Dimensional Chaotic Attractor 975 

The operator *F Pk, which is a counterpart of/3~, is an operator projecting a 
vector onto the subspace spanned by the Fourier vectors (fk, fk+l, 

*F fk+2,---). The component of the vector PkR at time z is 

~bk(R,z)= Z Fq(R)/q(~) (7.7) 
q>~k 

Sincefq(Z) is the Fourier mode, Ck(R, t) is nothing but a time series passed 
through a high-pass filter with the lower cutoff frequency cok = ktR/n (for k 
even) or cok+l (for k odd). (See eq. (3.2).) 

To summarize the result of present section. 

Short Summary 4. Except for the core mode, each of the Lyapunov 
vectors has a statistical one-to-one correspondence with each of the Fourier 
vectors. 

8. H IGHPASS-F ILTERED T I M E  SERIES 

According to the suggestion in the previous section, we study here 
characteristics of the high-pass filtered time series (HFTS) ~b~(R, t). The 
results presented here are not always based on the HFTS constructed from 
the Fourier transformation defined by eq. (3.3); we often choose the sample 
length for the Fourier transformation much longer than tR. However, the 
final result thus obtained is insensitive to the choice of sampling length. In 
this case the lower cutoff frequency of the high-pass filtered time series and 
the number k in eq. (7.7) are related by k = [cotR/n], because two Fourier 
modes exist in the frequency interval 2~/tR (see eq. (3.2)). We show in 
Fig. 8 a few examples of the HFTS for different cutoff frequencies 
co = k~/tR. At low frequencies the HFTS is almost entirely filled with fluc- 
tuation. However, as the cutoff frequency increases the HFTS becomes 
localized in several time domains, forming a "burst" of fluctuations. To 
visualize this we show how the active time domains are distributed over a 
two-dimensional plane of ~ and co. An example is depicted in Fig. 9. For a 
given co the active time domains, which are defined as a domains of 
satisfying ~ ( R ,  ~)~> ~bZ(R) (= average of ~2(R, z) over ~) are indicated by 
lines. The distribution pattern of active domains is quite different in the 
high-frequency regime than in the low-frequency regime; in the former, 
active domains at different frequencies are strongly connected with each 
other, whereas in the latter such a connectivity disappears and the dis- 
tribution of active domain has an irregular pattern. 

To describe the above characteristics quantitatively, we introduce the 
2R correlation function C~ F between the two HFTS ~bq2(R, t) and ~'k( , t). The 

definition of Ck F is the same as CLm (see eq. (6.3). We depict the correlation 
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functions at various k in Fig. 10(a). For a given k, C~ F has a maximum at 
q=k. Observe that the right-hand-side of C~ r has a long tail for k 
exceeding some critical value. To describe this we define the correlation 
length Ar(k ) at a given k as the half-width of Ck F.  Figure 10(b) shows the 
behavior of Ar(k ). Certainly, the correlation length increases very rapidly 
as k exceeds a characteristic value Krc. The frequency (.OFC = KFCrg/tR is the 
border of the two regimes in Fig. 9. 

The two frequency regimes co < COFC and co > coFC should correspond 
to the interior and the exterior of the attractor, respectively. Thus the 
critical value KFC must be the counterpart of the characteristic order ILc 
discussed in Sections 5 and6.  To verify this we check whether the 
correspondence rule ILc = i*(KFc ) (eq. (7.5)) is satisfied or not. In Fig. 11 
we compare KFC with i*-~(ILc) for various sets of parameters /t and tR. 
The agreement is quite satisfactory. Here KFC and ILc are determined from 
different time series for a given set of parameters tR and/~. The function 
i*(x) is constructed numerically according to the procedures explained in 
Section 7. Roughly it is approximated by a linear function 

i*(x) = 0.5x 

Since ILc is related to the Lyapunov dimension D by eq. (5.5), KFC is 
roughly proportional to D 

KFc/D ~ 1.5 

This implies that the Fourier space is about 1.5 times more "redundant" 
than the Lyapunov space in confining the attractor. 

(a) (b) 

u,uu 4.y l  ~.82 i4.73 tp,63 24,54 ~ 3, lip d.~8 9,~7 12.P76 I~,95 
FREOUENCY ( q ~ / t R )  FREOUENCY ( k ~ / t R )  

Fig. 10. Correlation functions C ,  F ,  (a) at various k and (b) correlation length A~k). In (a) 
the broken curve indicates (flatness factor - 1  ) at q. Here # = 2.10 and t R = 20. Compare  with 
Fig. 6. 

822/44/5-6-18 
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As will be discussed in Appendix B, the Fourier spectrum, i.e., 
({Fq(R)2>>R ~j,  decays exponentially in the high-frequency range. Such a 
frequency range is usually called the dissipative range. At first sight the dis- 
sipative range seems to correspond to the exterior of the attractor. 
However, this is not the case--at least in our system--because COFC is in the 
midst of the dissipative range, and there is not a clear indication that the 
shape of spectrum changes in the vicinity of COec. Thus the averaged 
Fourier component itself contains little information about the attractor in 
contrast with the averaged Lyapunov component. 

Kraichnan first suggested that the high-pass filtered time series 
becomes localized in the dissipative range. (1~ Such a localization is often 
called the dissipative range intermittency. Recently Morf and Frisch 
proposed an interpretation of the intermittent burst in terms of the com- 
plex time singularity. (H) As discussed in Section 6, the degree of intermit- 
tency is measured by the flatness factor, which is given by the maximum 
value of the correlation function Ck F plus 1 (see Sect. 6). As is seen in 
Fig. 10(a), the flatness factor certainly increases; however, it does not 
increase significantly until co exceeds COFC, although COec is in the midst of 
the dissipative range. Thus the localization occurs simultaneously with the 
rapid growth of correlation length. An important fact is that there is a low- 
frequency range in which the flatness does not increase significantly, which 
corresponds to the interior of the attractor. Such a behavior has been 
observed also in an experiment on fluid turbulence (see Fig. 16 of Ref. 12). 



Study of a High-Dimensional Chaotic Attractor 979 

This fact holds out hope that information on the strange attractor of 
fluid turbulence may be obtained directly from the HFTS. 

To summarize: 

Short Summary 5. The high-pass filtered time series provides direct 
information about the exterior and interior of the attractor. 

9. C O N C L U S I O N  

In the present paper we examined several methods to characterize the 
nature of a high-dimensional chaotic attractor. Using these methods, we 
investigated the underlying mechanism which connects the physical 
processes of turbulence occurring in the real space with the characteristics 
of the attractor in the phase space. In particular, we introduce the ideas of 
"interior" and "exterior" of the attractor, using the Lyapunov basis. The 
chaotic motion observed from the "interior" is considerably different from 
that observed from the "exterior." We have shown that the above difference 
is dramatically reflected in the correlation characteristics of the high-pass 
filtered time series, which is clearly represented by the pattern of the dis- 
tribution of active time domains (Fig. 9). 

The main results of Sections 4-8 are summarized in the form of a short 
summary at the end of each section. Each of these results expresses an 
important property of our high-dimensional attractor, and summary 5, 
which states the nature of high-pass filtered time series, has been derived as 
a natural result of summaries 1-4. It seems probable that all the assertions 
in the summaries hold well only for the delay-differential equations. 
However, we believe that it is worthwhile to examine the validities of these 
assertions in other high-dimensional attractors. In this sense we propose 
these assertions as working hypotheses to be examined in other attractors. 

Although the universality of assertions 1-4 may be doubtful, the asser- 
tion in 5 seems to be quite plausible and might be valid for a considerably 
wide class of high-dimensional attractors. The reason is quite simple: In the 
interior of an attractor new information, in other words, a new temporal 
pattern, is generated continuously. This information is transported to the 
exterior of the attractor and dies away there. Generally speaking, the high- 
frequency (or wave number) mode corresponds to the exterior of the 
attractor. If the lower cutoff frequency (or wave number) k of the high-pass 
filtered temporal (or spatial) signal is large enough, the high-pass filtered 
signal contains only the information in the exterior of the attractor, and so 
the pattern of the high-pass filtered signal is insensitive to the variation 
of k. However, as k becomes smaller, the high-pass filtered signal involves 
new information generated in the interior of the attractor, and the pattern 
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of the high-pass filtered signal becomes rich in new patterns and thus is 
sensitive to k. 

To verify the above conjecture we have to investigate the processes of 
generation and transport of information in high-dimensional attractors. 
This will be described in a forthcoming publication. 

APPENDIXA: NUMERICAL METHODS 

A.1. Integration of Delay-Differential Equation 

Equation (2.6) is equivalent to 

Xn+ 1('5) = F[x, (z ) ,  xn+ l(z)] 

- -X n + 1(27) @ r c p f [ x . ( z )  ] (A1) 

Let us denote the mth derivative of xn(z ) and of xn+l(z) by p(m)(z) and 
q(m)(z), respectively. The mth derivative q(m)(z) can be expressed in terms of 
q(~ and 9("')(z) (0 4rn'  ~<rn-1). This can easily be shown by differen- 
tiating (A1 ( m -  1) times with respect to z. For example 

qO)(z) = F[q(~ p~~ 

q<2)( z ) = F[ p(~ z ), q(~ + F[ q(~ z )' p(~ 

0 
+ P(1)(z) ~ F[q(~ p(~ etc. 

These relations are schematically expressed as 

q(m)(z ) = Q(m)[q(O)(Q, p(O)(z ) ..... p(m 1)(Z)] (A2) 

Now we introduce an approximation for numerical integration: We divide 
section [0, tg) into N segments of width h = tR/N. Let the kth discrete time 
be zk---hk. The Taylor expansion up to the Mth order leads to 

M 
q(O)('Ck+l)~-- E [q(m)(Zk)/m!]  hm (A3) 

m=0 

Equations (A2) and (A3) together with the continuity condition 

q(~ = p(O)(zN) (A4) 

provide a scheme to compute q(m)(zk) (0 <<. m <<. M, 1 <<. k <~ N) from p(m~(zk) 
(O<~m<~M, l<<.k<~N) up to the correction of O(hM+~). Replacing all 
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p(m)('Ek) by q(m)(zk) and repeating the above procedure, we can compute 
xn(r) = q(O)(r) successively. In our numerical simulation we typically choose 
M = 6 and h = 0.05. 

Integration of the variational eq. (2.7) has been done by applying the 
Runge-Kutta method to the differential equation equivalent to it 

8F[q(~ P(~ 8x~(~) 
~ . + ~ ( ~ ) -  @(o/(~) 

8F[q(~ P(~ 6x,+ 1(~) (A5) 
+ 8q(O)(~) 

A.2. G r a m - S c h m i d t  Procedure 

Consider a set of orthogonal vectors (el, e2 ..... ei,...). First we compute 
the transformed vectors by the variational equation defined by eq. (2.7) or 
eq. (2.7)', i.e. 

ai = DF(Rn) e~ (a6) 

Next we orthogonalize the vectors (a~, a2,...) by Schmidt's method 

)o~n) = Ilalll and e; = al/2~ n) 

i-1 (A7) 
~I n~ --- ~ , -  Z (a,.e;) e; 

j = l  

and 

I " 
~ -- a , -  ~ (a,-e~) '~?~ (i = 2, 3,...) 

L.. j = l  

Replacing ei by e~ and R n by Rn +1, we repeat the above procedure. Then 

1 N 

,~1= log 21") U~ co ~' 2i (Lyapunov exponent) 

and the orthogonal set of vectors (el, e2 ..... ei,...) approaches to the set of 
Lyapunov vectors defined at RN. 

We carried out the above procedure by means of discrete time 
representation explained in eq. (A1) (h = 0.05 typically). We iterated more 
than 500 times to attain a sufficient convergence of all the Lyapunov 
exponents. 
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APPENDIX  B: FOURIER S P E C T R U M  A N D  L-F 
C O R R E S P O N D E N C E  

The Fourier spectrum of any dynamical system decays, in general, 
exponentially in the high frequency (or wave number) regime. Such a fre- 
quency regime is usually called the dissipative range. On the other hand, the 
low-frequency regime below the dissipative range we call the core range. 
The greater part of turbulent fluctuation is carried by the Fourier modes in 
the core range. In the case of our system the Fourier spectrum is 
empirically given by the following expressions in the limit of t R >> 1 and 
/t~>l 

core range co ~< 1 P(co) ,-, 1/1 + (0 2 

(B1) 
dissipative range co >> 1 p((0) ~ exp -co/(5 

where (5 = (0.69 + 0.07)#. The total number of Fourier modes in the core 
estimated as no= 1 + (n/tR)= tR/n is much smaller than the Lyapunov 
dimension D ~ t R #  (eq. (4.2)). Thus the core range is completely in the 
interior of the attractor. As shown in Section 7, a Lyapunov vector with 
vector number larger than nc has a corresponding vector in the Fourier 
basis, i.e., the L - F  correspondence, but any Lyapunov vectors with a vec- 
tor number less than nc does not. The latter vectors are called the core 
Lyapunov vectors (see Sect. 6). The component of core Lyapunov vector 
ei(z, R) (see e.q (3.1)) is notably localized in time just as the bound state of 
a Schr6dinger equation with an attractive potential. Therefore, such a vec- 
tor has the maximum Fourier component at k = 0. 

On the contrary, the Lyapunov vectors out of the core are extended 
and oscillate in time just like the ionization states of a Schr6dinger 
equation. Such a state heavily contains a specific Fourier mode and thus 
has the L - F  correspondence. 

The core range is very important in the case of the Kuramoto -  
Sivashinsky (K-S)  equation, which has recently been investigated by 
Pomeau, Pumir, and Pelce (5) and by Manneville, Pumir, and 
Tuckerman. (5) Contrary to our model, the core range is relatively wider 
and the wave number corresponding to D is in the midst of the core range. 
According to the results of Pomeau, Pumir, and Pelce (5) there is no 
indication of the L - F  correspondence when the Lyapunov vector number 
is smaller than D. It seems that such Lyapunov vectors are localized in 
space. (5) Considering these, the frequency (or wave number) range where 
the L - F  correspondence exists may be closely connected with the dis- 
sipative range. In Fig. 12 we summarize what is known and also what may 
be conjectured for the K-S  equation in comparison with our model 
equation. 
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DD eqn. 
,i~ L-F correspondence 
! 

i ~  d i s s i p a t i v e  range 
i 
i D~/t R 
I 

~ x ' ~  ' l l l l l / / / v < ,  > HFTS connected 

frequency ~LC 

K-S eqn. 

L-F correspondence ~ 

d i s s i pa t i ve  range r~ 
4 

O~/k : 
> HFTS connected r~ 

~ X X Y  " f / / /  
X ~  CORE ~xXv ~ INTERIOR UJ l l  > EXTERIOR .Q 

wave number kLC 

Fig. 12. Relation between structure of attractor and phenomena occurring in frequency 
(wave number) space, which is established for the delay-differential (DD) equation and expec- 
ted for the Kuramoto-Sivashinsky (K-S) equation. 
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